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Abstract

Recent investigations have successfully
demonstrated closed-form analytical solutions of
spontaneous capillary flows in idealized
cylindrical containers with interior corners. In

this report, the theory is extended and applied to
complex containers modeling spacecraft fuel
tanks employing propellant management devices

(PMDs). The specific problem investigated is
one of spontaneous rewetting of a typical
partially filled liquid fuel/cryogen tank with
PMD after thrust resettling. The transients of this

flow impact the logistics of orbital maneuvers
and potentially tank thermal control. The general
procedure to compute the initial condition (mean
radius of curvature for the interface) for the
closed-form transient flows is first outlined then

solved for several 'complex' cylindrical tanks
exhibiting symmetry. The utility and limitations

of the technique as a design tool are discussed in
a summary, which also highlights comparisons
with NASA flight data of a model propellant tank
with PMD.

Introduction

Recent investigations have successfully

demonstrated asymptotic techniques for the
solution of spontaneous capillary flows in
idealized containers with interior corners 1. The

approach yields simple closed-form solutions for
important features of the flow such as transient
flow rate and 3-D interface shape without
applying approximations such as hydraulic

diameter, friction factors, or weighted capillary
pressures. More recently, these techniques have

been applied to cylindrical containers of irregular
polygonal cross-section 2, the results of which

compare favorably with benchmark drop tower
experiments.

In this report, the theory is further extended to

complex containers modeling spacecraft fuel
tanks employing propellant management devices
(PMDs). However, the general approach is

expected to be useful to many low-gravity fluids
management and handling operations. The
specific problem investigated is one of

spontaneous rewetting of a typical partially filled
liquid fuel tank with PMD after thrust resettling.
The transients of this flow impact the logistics of
orbital maneuvers and potentially tank thermal
control, particularly when the liquid inventory

represents a significant percentage of the total
mass of the spacecraft.

The method of solution is briefly outlined where
it is shown that the mean radius of curvature of

the interface at equilibrium can be used to
compute the pivotal initial condition for the flow
throughout the container. This mean radius R

may be expressed analytically for an important
though restrictive class of simple containers
using the approach of de Lazzer et al.3 It is

shown herein that this approach may be extended
to certain more complex containers that are
symmetric. (Computations of R using Surface
Evolver 4 may be employed for containers of

arbitrary complexity.) Once R is known, the
existing analytical solutions may be applied and

the key characteristics of the flow may be
determined in closed form. Examples of tanks
with central radial and radial wall vane PMDs

are provided. Transient flow rates are presented
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modeling the thrust resettling problem for three

'complex' containers patterned after the tank and

PMD employed in the Vented Tank Resupply

Experiment (VTRE Shuttle Flight Experiment).

Despite the violation of several theoretical

assumptions the results of comparisons to the

VTRE data argue favorably for the use of the all-

analytical approach as an efficient and accurate

design tool to predict complex capillary flows in

low-g propellant management systems. It is

recommended that the approach also serve as a

guide to fully transient 3-D numerical

calculations (CFD).

Review of Flow in/th Corner

Detailed comparisons between experiments and

theory have demonstrated that spontaneous

capillary flows in irregular polygonal containers

withj interior corners satisfying the Concus-Finn

corner 5 wetting condition are controlled by the

local capillary flow in the corners 2. Assuming a

wetting fluid and locally parallel flow [(Hj/L) 2 <<

1], the dimensionless leading order governing

equations simplify to the nonlinear lubrication

equation

h_ = 2h2z + hhzz, (1)

where h = hj is the dimensionless height of the

meniscus measured along the bisector of the jth

corner at location z (see Fig. 1 for notation).

\'_/0 /

Figure 1. Fluid column in an isolated corner j, angle

2@ The 3-D surface profile is S(y,z,t) with

characteristic height and length, H = H, and L = Lj,
respectively.

This implies that the capillary surface is a

construct of circular arcs in the cross-flow plane

(x-y plane), and, once h(z,t) is determined, the

entire 3-D transient surface is known from

where

Sj=hj(l+fj) 2 2 2,1/2+(hi fj -yj) ,

ly,l<_h,f,

(2)

and (_j =-_/2-Oej-0. The parameter fj is the

measure of interface curvature (driving force) in

the jth corner satisfying the Concus-Finn

condition (6, < _/2 -a,) and is given by

sin a j
fj - (3)

cos 0 - sin c_j

where 0 is the contact angle and @ is the

particular corner half-angle. The static contact

angle boundary condition is correct to leading

order because the predominant flow direction is

parallel to the contact line. The problem of

sudden capillary rise 6'7'1 (i.e. imbibition), akin to

termination of thruster firing during routine tank

settling, applies constraints h(O,t) = 1, h(L,t) = O,

and conservation of mass to eq. (1). The solution

for the jth interior corner provides important

design quantities such as liquid column length Lj,

flow rate ()j, and position of the receding bulk

meniscus zb as functions of time. These quantities

are provided below in dimensional form:

L, = 1.702 1/2 1/2 1/2G, H, t (4)

()a = 0.349f,2Fa,, Gjl/2Hj 5/2t 1/2 , (5)

where Hj is the constant height (a.k.a. constant

pressure or curvature) condition at z = 0. The

total flow rate may be determined simply as
n

=Z0,

and the location of the receding bulk meniscus is

approximated 2 by

z b = 1.702 t (6)

where
n

1/2

- 0.4103_FA,_j Fj (cos0- sln_j)

_,,+ j 1

&
R2 j 1

The geometric function

cos6 sin6j _J' (7)
FA"j - sinc_j
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andGj is given by

o-F/sin 2 a_j , (8)
Gj =

where Fi is a weak function of 0 and oe and may

be treated as a constant Fi _ 0.142 (see reference

1, Fig. 6 for exact value). Note also that Fzj =

(Fi)j -_ 0.142. o- and /J are the fluid surface

tension and dynamic viscosity, respectively.

From eqs. (4) through (8) low gravity containers

may be sized, fluids selected, or flow times

predicted. Such quantities, which can be rapidly

computed by hand, are accurate to -+6% for

perfectly wetting fluids 6'7'1 and represent an

improvement over previous design relationships

that used corner friction factors and weighted

capillary pressures s.

However, the transients of the spontaneous

corner flows may not be calculated without

knowledge of Hi. The constant height Hi at z = 0

is directly related to the mean radius of curvature

R of the interface at equilibrium for the container

in question, which is a function of container size,

shape, fill level, and liquid contact angle(s). R

could also depend on the fluid's history if more

than one local equilibrium interface

configuration is possible. (R - 1/2N where His

the mean curvature of the interface.) For an

important class of cylindrical containers with

sufficiently planar interior corners satisfying the

Concus-Finn condition

R = fjHj. (9)

It is therefore necessary to determine R for the

container before Hi and the subsequent transient

flows in each corner may be computed.

Calculation of Tank Mean Radius of Curvature

In the zero-gravity environment, for cylindrical

containers of arbitrary cross-section that possess

at least one interior corner satisfying the Concus-

Finn condition, de Lazzer et al.3 apply the

divergence theorem to the Young-Laplace-Gauss

equation
Vu 1

over a presumed solution domain f_* bounded in

part by circular arcs of radius R that cut off

corner flow sections and meet the rigid walls in

the prescribed contact angle 0. See Figure 2 for

the case of a rhombus. When such a domain can

be found, the divergence theorem yields

_cosO *ds = l_*l/ R . (10)
E 1 uE2

Here ]_1 denotes the totality of boundary arcs on

the rigid part of the boundary, and E2 denotes the

circular arcs that appear, see Figure 2b. On 21,

0* = 0 is the prescribed contact angle of the

liquid with the material of the containing vessel;

in accordance with the method, 0* is set equal to

zero on E2, corresponding to the hypothesis that

the fluid rises vertically on the E2 arcs.

For the cases of regular polygonal and rhombic

cylinders, de Lazzer et al found that by inserting

arcs symmetrically into corners as indicated in

Figure 2, a unique value of R consistent with the

construction could be found. We outline that

procedure for the rhombic case in eqs. (11) to

(13) below. It does not follow directly from the

method that the value thus determined actually

corresponds to a solution of the form desired;

however the correctness of the procedure for the

case of a regular polygon was later demonstrated

by Finn and Neel 1°. These authors go on to point

out that in a general configuration the application

of the method becomes difficult and additionally

can lead to erroneous results. Nevertheless, the

procedure does lead to formally solvable closed

form expressions for R for a variety of relevant

container section types, several of which have

been verified experimentally: squares 1'6, rhombi 7,

rectangles 1, equilateral triangles 1, irregular

triangles 2, and simple cylinders with regular

vanes 9. Although the hazards pointed out by Finn

and Neel are real, one may presume on the basis

of their success with the regular polygon that at

least some of these special cases correctly

represent reality. Beyond that, the close

correlation we have found in the cases we

consider, with numerical results from the Surface

Evolver and comparison with experiment, speak

strongly for the underlying correctness of the

present application.

In a general case and especially for asymmetric

configurations, strong caution must be advised.

In the present paper, symmetric interfaces in

symmetric containers will be assumed in like

manner as in de Lazzer et al, since such

interfaces are frequently observed in practice.

NASA/CR--2002-211974 3



As illustratedin Fig.2, for a cylinderwith
rhombicsectionwhere the Concus-Finn
conditionis onlysatisfiedin thecornerswith
acuteangles3, alongthe ith portion of the

perimeter the contact angle for use in eq. (10) is

Oi. The area contained within the projected

perimeter is f_* and is identified by a heavier line

weight in this and figures to follow. The sought

mean radius of curvature of the interface is R.

The dashed lines sketched in Fig. 2b will be

discussed shortly.

/

a. b. {?X 2 A-A

Figure 2. Rhombic cylinder with wetting of acute

edges only, after de Lazzer et al 3.

The left hand side of eq. (10) may be evaluated

and represented as the summation of projected,

interface perimeter lengths Zi, weighted by

cos6i, and enclosing area f_*:

n

EZ i = f_* /R (11)COSOi o

i 1

For the polygonal section depicted in Fig. 2, 03 =

O, following de Lazzer et al 02 = 0, and eq. (11)

becomes

lY, IICOSOq-IY, 2I : _* /R, (12)

which when solved for R yields

R= Pc°sO _1-_1 4AZ , (13)

I P2c°s2°
where P and A are the total perimeter and area of

the container cross-section, respectively, and

j 1

with Fanj given by eq. (6). For the rhombic

section of Fig. 2 is £ = 2Fan. FA,,j is the

dimensionless geometric constant of proportion-

ality for the cross-flow area Aj and mean radius

of curvature squared; namely,

Aj =R2FAn_ =f/h_FAn _ .

Note that £ of eq. (13) bears no relation to 2i of

eq. (11).

Modified Approach to Calculate R

An alternative application of the technique of de

Lazzer et al may be pursued by identifying and

analyzing symmetric sub-sections of a given

container cross-section. For example, the

smallest symmetric subsection of the rhombic

cylinder example of Fig. 2 is the quarter section

identified by dashed lines in Fig. 2b. This

symmetric subsection is redrawn in Fig. 3. An

additional angle 03 must be specified along the

symmetry boundaries. Assuming the Concus-

Finn condition is satisfied only at the acute

vertex, eq. (11) for the geometry of Fig. 3

becomes

ly,llCOSOl+lZ21coso2+ly,3lcoso3 = _*/R. (14)

Along the exposed (unwetted) faces of the

rhombus 271, 03 = O, the contact angle of the

liquid on the wail material. Along the fluid

interface spanning the corner Xe, 02 = 0.

Additionally, because the dashed lines identify

planes of symmetry for the surface, along 273,

03 = _r/2. Substitution of these quantities into

eq. (14) produces

lY,1]cOSOl+lZ21=n*/R, (15)

which is identical to eq. (12) only 271 in this case

does not include the symmetry plane portions of

the perimeter of the subsection. Solving eq. (15)

for R in this case yields

  coso[/
1- 1 p,fcos O) ]

2Z 7---_ '

which produces the same value for R as

computed by eq. (13) since for this symmetric

subsection Z = FAn�2, and Pw and A are 25% the

values for the full domain solution, eq. (13). Pw is

the perimeter of the section minus the symmetry

boundaries.

NASA/CR--2002-211974 4



Fig.3.SymmetricsubsectionforrhombusofFig.2.
Symmetryplanesidentifiedbydashedlines.

Aswillbedemonstrated,thismodifiedapproach
to computeR is useful in determining flows in

more complex containers. But the technique is

fundamentally limited by the assumption of

symmetric interfaces in symmetric containers.

Uniqueness and stability of particular presumed

interfacial configurations based on intuition and

experience may also be difficult to establish 1°

and will depend on fluid fill level and history for

real systems.

Calculation of R in Complex Cylindrical

Containers with Symmetry

Cylindrical Tank with Central Radial Vanes

By viewing more complex container cross-

sections as collections of symmetric subsections

it is possible to compute R analytically for

a variety of important container types

with applications to low-g propellant/cryogen

management.

For example, a cross-section of a long, partially-

filled, right circular cylindrical propellant tank

model with central radial vane structure is

sketched in Fig. 4a. Again, due to the symmetry

of the tank the equilibrium mean radius of

curvature of the interface R may be determined

by analyzing the smallest symmetrical element of

the section as sketched in Fig. 4b. Assuming the

Concus-Finn condition is satisfied between each

of the vanes, eq. (16) for the geometry of Fig. 4b

yields again

 :,co ol¢14A /1 ]1- , (17)

P c°s2°

where Pw = 2V + 2_r, A = _r 2, and Z = FA_ as

given by eq. (6) for the wetted corner formed by

the vane of vertex angle 2_. For 0 = 0, defining

nondimensional quantities

V =- V/r, eq. (17) becomes

R=_R/r

(q/+a)[ ( aFan
K=--I- 1

Fan (q/+ oO 2--/1/2 ] "

and

(18)

Eq. (18) is constrained by at least the condition

< V sin a/sin _ ; the interface cannot pin on

the vane edges. Other constraints are possible,

such as the case of wetting between the vanes

and the circular tank wail which is not considered

here though increasingly likely as the vane length

q/approaches 1.

The symmetrical tank sketched in Fig. 4 may be

generalized to a tank possessing n-vanes. For

such a tank, and for 0 = 0, eq. (18) is presented

in Fig. 5 for a variety of dimensionless vane

lengths q2. The domain of each curve is limited

by the constraint of no pinning on the vane

edges. As is observed from the figure, the case of

only 2 vanes with q/ = 0 recovers the correct

solution of the right circular cylinder without

vanes, X= 0.5. It is also observed from the figure

how X decreases with increasing number of

vanes (decreasing _).

_-- F

T _,._2

Zl !] o. ,,'z3"

2 1

b.

Figure 4. Simplified cylindrical tank model with

central radial vane PMD: a. cross-section identifying

wetted vanes, b. symmetric element of shaded region

in a. with 23 identifying symmetry planes.

Despite the limitation of no pinning allowed on

the vane edge, the dimensional mean radius of

curvature of the interface R = r_ may be

computed from eq. (18) for a number of vane

lengths V = rq/of practical importance.

NASA/CR--2002-211974 5



_4

0.5

0.4

0.3

0.2

0.1

0

2 vanes

0 0.2 0.4 0.6 0.8 1

q2

Figure 5. O_vs. Vfor n-vaned tank patterned after the

tank of Fig. 4.

Regular n-gon Tanks with Radial Wall Vanes

Another benchmark tank model readily
addressed by the analysis outlined herein is that

of regular polygonal cylindrical tanks with radial
vanes emanating from the corner vertices•
Several such tanks are sketched in Fig. 6 for
n = 3, 4, 6, and 12. As n increases this tank

model approaches that of a right circular
cylindrical tank with radial vanes emanating from
the tank wall. The tank with n = 12 is presented
in Fig. 7 in greater detail•

Figure 6. Regular polygonal tanks with radial wall

vanes: n = 3, 4, 6, and 12.

Again, due to the symmetry of the tank the mean

radius of curvature of the interface R may be
determined by analyzing the smallest

symmetrical element of the section as sketched in
Fig. 7b for the case n = 12. This element is a
right triangle with acute vertex angles Kin and

_(1/2 - 1/n). Assuming 0 = 0, the Concus-Finn
condition is satisfied in each interior corner

formed by the vanes, and eq. (17) for this
problem may be solved for R and

nondimensionalized by tank circumscribing
radius r yielding

FAnsin(2.rt/n))l/2].(V + sin(a/n)) 2

(19)

r

• b•

Figure 7. Regular polygonal tank with radial wall

vanes, n = 12: a. cross-section identifying wetted

vanes, b. symmetric element of shaded reNon in a.

with Z3 identifying symmetry planes•

Eq. (19) is constrained by at least 2 conditions:

1. X < q/sin c_/ sin _5, interfaces can not pin on

vane edges.
2. X < sin(_/n) sin a/sin _5, a single inter-

face can not span two corners.

Again, other constraints are possible, such as the
case of a single interface wetting two vanes near
the tank axis for large q2. This case is not

considered here though increasingly likely as the
vane length Vapproaches 1.

0.5.

0.4

0.3.

0.2

0.1

0

............. _VTRE

b

", /, /_ 6 _4 _I

.... 48

i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

v

Figure 8. O_vs. Vfrom eq. (19) for tank of Figs. 6 and

7 with n = 3, 4, 6, 8, 12, 24, and 48. Dashed line at

curve terminus implies vane pinning constraint, dot-

dashed line implies single interface spans two corners•

O_is computed via eq. (19) as a function of q/for

a variety of n and presented in Fig. 8. The
domain of the solutions is limited by at least the
two constraints identified on the figure• For the

NASA/CR--2002-211974 6



case n = 12, the curve identifying the complete

range of _v(q/) with noted constraints is presented

for later discussion.

Solution to Transient Flows using 9_

Once O_is known for the tank, H a.values for each

corner flow are computed using eq. (9) and the

design quantities provided in eqs. (4), (5), and

(6) may be determined. In addition, the entire

surface profile of the liquid throughout the

container may be computed. The solution follows

from a global similarity solution and is

applicable at long times throughout the container,

despite the fact that both the flow and interface

shape are not known in the neighborhood of the

bulk meniscus 2. By approximating the global

similarity solution for the meniscus centerline

height in each corner by the polynomial

2

hj = Hj(1-0.57111j-0.429r/j ) (20)

with

r/] = 0"587(o-/-, j (F//'tfJ)jsin 2 _ / _/2Zt 1/2

(21)

subject to the constraint

r/Zo+fj

F0!/2 sin aj
</1_ <1

the 3-D transient interface in each corner may be

computed via eq. (2).

Note that for the tanks of Figs. 4 and 7, the index

j is somewhat superfluous since all interior

corners of the tank are identical.

Examples of Design Utility

Cylindrical tanks may be designed with optimal

characteristics using the analytical solution

approach. A hypothetical example might be a

PMD which would minimize tank rewetting time

following resettling without an excessive mass

penalty for unnecessary vanes. To address this

optimization problem one might compute a ratio

of total flow rate to total vane length. For the

specific case of the central radial vane tank

model sketched in Fig. 4 this ratio employs eq.

(5) and is given by

nQtot _ 0 349 FA_ ( crFi R5 sin2 O(/1/2
nV . ----_-_. ---_7 t . , (22)

where V is the vane length and Fan, R, g, and f

are functions of the number of vanes n.

Substituting 0_ from eq. (18) into (22) and

retaining only dimensionless geometrically-

dependent terms, one computes

{ j/2]}5/2_ 100 sin_ O_FAn

Q ffA3_l 2qfl (q/+o()1- 1 (qffq__9()2

(23)

where the prefactor of 100 serves to make Q an

O(1) quantity for simplicity in presentation. For

the tank with PMD sketched in Fig. 4, for 0 = 0,

Qfrom eq. (23) is presented for a variety of vane

lengths q/ in Fig. 9. The vane edge pinning

constraint restricts the range of each curve in a

similar fashion as the curves computed and

presented in Fig. 5. Qis maximized for n = 12, q/

= 0.68, which means that the highest rewetting

flow rate per unit vane length is achieved for

these conditions for this PMD-type. (It is

interesting to note that Qis maximized for n = 12

and thus _= 15 °. This value also corresponds to

the wedge half-angle yielding the maximum

capillary flow rate for a fixed volume spreading

dropll.)

This example optimization is one of several that

may be constructed for a variety of complex tank

geometries. Such analytical schemes are quickly

accomplished, accurate, and trivial in terms of

commitment compared to numerically based

techniques.

2.5

2.0

1.5

<2

1.0

0.5

0.0

n=4

0.2 0.4 0.6 0.8 1
q/

Figure 9. Dimensionless flow rate to vane length ratio

Qfor radial center vane PMD sketched in Fig. 3.
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Limitations of the Theoretical Approach

The preceding analysis to compute R assumes a

priori knowledge of the interior corners of the

container that satisfy the Concus-Finn condition.

The analysis also assumes knowledge of a local

and symmetric equilibrium surface (one of

perhaps manyl°). For more complex symmetric

containers such as those shown in Figs. 4 and 7 it

is assumed that the interface is also symmetric.

For the ensuing transient flow problem, the bulk

interface is assumed to rapidly achieve a constant

mean radius of curvature R. The interior corners

must be sufficiently planar such that the flow

may be approximated by the system defined by

eq. (1), Fig. 1. The planar interior corners must

also be of sufficient size such that the interface

does not pin on wettability boundaries, i.e. the

terminus of a vane (where the equilibrium

contact angle is no longer unique). Such pinning

flows are address analytically by Romero and

Yost 12 and experimentally by Mann et al.13

Slightly non-planar interior 'corners' may be

treated by a modified analytical approach 14.

For cylindrical containers of increasing

complexity, a generally increasing number of

constraints must be applied to the solution for R.

These constraints limit the range of applicability

of the present solution procedure. Modified or

alternate techniques may be developed for

constraint conditions such as edge pinning or

single interfaces spanning more than one interior

corner. The more general though complex

approach of Finn and Neel 9 may also be applied.

Such techniques will be discussed in a

subsequent publication as will be the significant

impact of contact angle hysteresis for real

systems where 0 > 0, which has been ignored.

Application to Tank PMD Rewetting

The analysis outlined herein naturally applies to

spontaneous capillary driven flow as occurs in

liquid propellant tanks following termination of

thruster firing for orbital maneuvering, docking,

or tank resettling. Other examples include myriad

low-g fluids management applications (i.e. on-

orbit container filling) and drop tower tests.

Attention here is focused on the former where the

results of the Vented Tank Resupply Experiment

(VTRE) provide in-flight data of PMD rewetting

following thrust resettling.

VTRE PMD Rewetting after Thrust Resettling

VTRE was conducted aboard the Space Shuttle

in 199615. The experiment explored a variety of

practical issues concerning propellant

management in a space-based system. One of the

tests performed involved thrust resettling of a

20% filled spherical tank with PMD: 12 axial

radial (center post) vanes and 12 axial radial wall

vanes. The test was conducted by exploiting the

Orbiter primary Reaction Control (RCS) jets to

settle the liquid contents in a most unfavorable
location within the tank to observe the

spontaneous redistribution of the liquid upon

termination of the thrust. A schematic of the r =

0.178m tank is provided in Fig. 10a with a cross-

section in Fig. 10b. The test fluid was R-113 at

20 °C with o-= 0.0167N/m,/,z = 7.21.10 .4 kg/m.s,

p = 1570 kg/m 3, and 0= 0.

a. b.
A-A

Figure 10. Spherical VTRE tank with 12 inner and
outer radial vane PMD: r = 0.1778 m. Tank vent at

top, propellant outlet at bottom.

b.

Figure 11. Approximate VTRE interface

configurations for _ 20% fill: a. effective equilibrium
with g > 7(10)-4go (go = 9 .8m/s2) acting positive-

upward, t = 0, b. L(t) during PMD rewetting
with g _ O (10-6go), c. L(t) at data termination, g _ O

(10-6go), t = t_ d. equilibrium, g _ O (10-6go).
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Theequilibriuminterfaceforg _ 0 is shown in

Fig. 1ld--liquid centered over propellant outlet,

vapor centered over tank vent. During

unfavorable thruster firing the liquid contents

reorients to the configuration sketched in Fig.

1 la. Following termination of the thruster firing

the fluid spontaneously returns to the low-g

equilibrium configuration of Fig. l ld by the

combined influence of surface tension, surface

wettability, and container/vane geometry. It is of

critical design importance to understand

quantitatively what minimal PMD will produce

the desired performance.

As a first application of the theoretical technique

to model PMD rewetting following termination

of thruster firing, the VTRE data was re-analyzed

to determine the transient meniscus tip location

Ej(t) in the interior corners of the tank formed by
the vanes of the PMD. The fact that the tank was

filled to approximately 20% led to the initial

condition of a predominantly flat surface (Fig.

1 la) that did not contact the center radial vane

structure. Thus, upon termination of the thrust,

rewetting of the tank consisted first of

spontaneous corner flows along the radial wall
vanes to the base of the central radial vane

structure at the propellant exit port, Figs. 1 lb and

l lc. The central radial vane structure was then

wetted from below and the spontaneous flow

along this path eventually returned the liquid to

the equilibrium configuration shown in Fig. 1 ld.

200

150

-_100

_a

5O

0.8 1 1.2 1.4 1.6

sqrt(t)

Figure 12. Corner tip location L vs. t 1/2 for VTRE

during spontaneous rewetting of two outer wall vanes.

Solid line is eq. (4) with O_= O_VTRE= 0.412.

The flows of interest are identified schematically

in Figs. l lb and l lc. VTRE data for the

meniscus tip location L of two radial wall vanes

is provided in Fig. 12. Significant optical

distortions prevented accurate measurements for

other vanes. These data are collected from the

VTRE flight video tapes following termination of

the Orbiter RCS firing. The Tracker Image

Analysis System developed by NASA 16 is used to

digitize the video images. The meniscus location

is computed by applying optical corrections for

camera rotation, depth of field, and projection of

the 3-D spherical flow onto the 2-D CCD array.

Measurement accuracy is estimated to be better

than -+5%, the largest uncertainty arising from a

5% change in scale factor from the front to

midplane of the spherical tank. A tank flange

obscured data for time less than that shown on

Fig. 12.

For the two vanes analyzed, L(t) is presented

against t 1/2 in Fig. 12 as suggested by theory,

eq. (4). The flows are nearly identical reflecting

the degree of symmetry of the initial condition

(thrust well-aligned with tank axis) and computed

slopes for each vane agree to within 4%. Because

the time for the initial wall rewetting was so short

(<l.7s), L vs. t also appears linear for this test.

Nonetheless, the precision of the linear fit for

L vs. t 1/2 argues favorably for application of

the transient analysis outlined herein. Thus,

applying the form suggested by eq. (4) to the data

of Fig. 12

LVrRE = 0.232 t 1/2 , (24)

where the experimentally determined coefficient
0.232nfs 1/2 is accurate to -+5%. Increased

uncertainty is expected for t < 1 s. It is insightful

to mention that for this 0.356m diameter tank

average corner flow velocities are as high as
0.232m/s within ls of thrust termination. Such

velocities increase with container size to the

g2-power. Initial velocities in a similar lm

spherical tank and fluid are likely to be 0.39m/s.

Substituting the thermophysical properties of

R-113, eq. (4) is equated to eq. (24) and solved

to determine O_VTRE = 0.412. This is the

experimentally determined value of R which

when used to predict meniscus tip location L(t)

during rewetting provides the collapse of the

experimental data illustrated in Fig. 12 and

prediction by eq. (4) to within -+5%.

Generalized VTRE Model Section

Because flight data of PMD rewetting is

extremely rare it is of value to apply the

analytical approach of this paper to the VTRE

NASA/CR--2002-211974 9



tankPMDrewettingtestdespitethefactthatthe
sphericalVTRE tank with PMD violates
numerousassumptions:

1.Thetankisspherical,not cylindrical, and 3-D

curvature affects might be expected to be

significant.

2. The widths of both central and wall radial

vanes vary with axial location.

3. The mean radius of curvature R for equilibrium

interfaces is a significant function of fill level.

4. The VTRE tank might be considered 'large'

and the rapid formation of a bulk interface with

constant R seems unlikely.

5.VTRE experimental data show that the

rewetting flows along the corners formed by

the radial wall (outer) vanes eventually pin on

the vane edges and that single interfaces are

observed to span two interior corners formed

by the outer wall vanes. It is noted that both

occur near the end of the rewetting event.

r

5L ',a*.t2rl
4-P7 -
I _:. '...QN

iiigz:
b.

Figure 13. VTRE cylindrical tank model: a. cross-

section identifying inner/outer wetted vanes, b.

symmetric element of shaded region in a. with 2_

identifying symmetry planes.

In the face of such seeming complications the

analytical technique is applied to model the

VTRE PMD rewetting event. A generic

cylindrical model of VTRE is sketched in Fig.

13a. The smallest symmetrical element is

depicted in Fig. 13b. Due to the large number of

vanes, the curved portion of the section is

approximated as a straight section in Fig. 13b,

in a fashion after the tank model of Fig. 7 with

n = 12. However, unlike the example of Fig. 7,

the curvature of the tank is modeled with

improved precision by approximating the

smallest symmetrical element as an isosceles

triangle, rather than a right triangle. This decision

is mute for large n, since the difference in models

is measured by 1/n. Eq. (17) for the cross-section

in Fig. 13b yields

where

fee/2 vsin l/l/21,-_=_/ - 1 f2

f --- (2sin (al/2) + ¢_1 -}- ¢_2) cOS6'

_V =- FAn1/2 + FAn2,

(25)

and subscripts 1 and 2 denote inner and outer

vanes, respectively. (Note that Oel= K/12.)

The presumed interfacial configuration of Fig. 13

leads to eq. (25) for the prediction of X.

However, other more preferred configurations

may arise, several of which are anticipated as

sketched in Fig. 14. One approach to determine

the transient flow problem for each configuration

is to first assume the configuration, compute O_

for that configuration using eq. (16), and apply

the transient solutions of eqs. (4)-(6). The surface

energy of a given interface configuration will

help identify preferred states, but mathematical

proof is required to establish if a given

configuration is indeed unique 9.

Concerning the configurations of Fig. 14: Fig.

14a is the case under consideration. Cases 14b

and 14c are the limiting cases of interface

pinning on q/1 and q/2, respectively. Case 14d is

the limiting case of a single interface (/2) wetting

two adjacent out vanes, q/2. Case 14e is the

limiting condition of q/2 intersecting the interface

(I1) in q/1. The cases of 14f, 14g, and 14h are

actually different configurations and not limiting

cases of the sought configuration 14a. Case 14f is

the condition where I1 wets both q]l and q]2 and

cases 14g and 14h arise when a third interface/3

is present: 14g when I1 only wets q/1 and 14h

when I1 wets both q/1 and q/2. Other

configurations might be considered. For brevity

in the following discussion, the cases of 14f, 14g,

and 14h will not be consider despite being

increasingly probable as q/1 and q/2 approach 1.

The notation I1, /2, and /3 is used to identify

interfaces in the inner and outer vanes and

between q/1 and the outer wall, respectively, as

indicated in Fig. 14.

NASA/CR--2002-211974 10
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Fig. 14. Some possible interface configurations for the

symmetric subsection of the VTRE model of Fig. 13.

The dimensionless mean radius of curvature

Pv(q/1; q/2) from eq. (25) with 0= 0 is presented in

Fig. 15 for the range of possible q/2 values

identified on the figure. For the interface

configuration depicted in Fig. 13, the possible

values for O_are at least constrained by:

1. _ < 1, V1 may not contact tank wall.

2. V2 < 1, V2 may not contact center post.

3. X < q/1 sinal/COSal , 11 does not pin on V1.

4. j( < q/1 tan(_z/4 - a 1/4),/2 does not pin on V2.

5. PL _ fl (1 -- c_ 2 )' v'2 does not touch 11.

6. YL <2sin(cel/2)tan(Tr/4-Cel/4 ), I2 does not

span 2 outer vane corners.

7. X < y-/22_, O_cannot exceed tank maximum.

It is important to repeat that the above list is not

exhaustive.

0.2

0.18

0.16

0.14

_0.12

0.1

0.08

0.06

0.04

0.02

0

/ 0.20

/ 0.35 ............

°- -012

q29 0.70__. - - 081.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q]l

Figure 15. Pv(V1;q4) for tank sketched in Fig. 13.

Upper horizontal dashed lines imply _ pinning,

diagonal dot-dashed line implies V1 pinning, lower

horizontal dashed lines imply V2 intersects I 1.

VTRE Model Section: Special Case

For the special case of q/2 = 0.35, 0 = 0, eq. (25)

is solved and presented in Fig. 15 along with

constraints #3 through #7 identified for this

VTRE-like cylindrical model. It is observed that

the limiting constraint is interface pinning on the

inner vanes (/1 pins on q/l, #3) and the curve for

larger values of O_ (smaller q/l) is approximate at

best. Constraints #5 and #6 are coincidentally

nearly identical for this special case of q/2 and the

curve for lower values of q/1 is irrelevant since

the fluid configuration is no longer even closely

modeled by the schematic in Fig. 13.

050.4

#4

0.3 ,/_ #5, #6

0.2 _,

0.1

0 -

0.2 0.4 0.6 0.8 1

qZ

Figure 16. _ for model VTRE tank (Fig. 12) with

V2 = 0.35: Constraints are identified by list number for

this geometry.
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Forthefurtherrestrictedcaseof V1 = 0.6 and

V2 = 0.35, the Surface Evolver 4 algorithm is used

to compute the full 3-D surface for a cylindrical

tank of radius r, diameter D, and cylindrical

section length L. The cylindrical tank has circular

disc end caps (lids). The aspect ratio m of the

cylindrical portion of the tank is defined by L/D.

The computed equilibrium surface is shown in

Fig. 17 for 0= 8.11 ° for a tank with aspect ratio

m = 3, and 52% liquid fill volume. A computed

cross-section of the smallest symmetrical element

at the mid-plane of the tank is shown in Fig. 18.

Several Surface Evolver-computed values (SE)

for the container mean radius of curvature R are

listed in Tables 1 through 4 for comparison with

values computed using eq. (25). Holding all other

parameters fixed, Tables 1-4 list values for O_

dependent on contact angle 0, vane lengths V1

and V2, aspect ratio m, and liquid fill level.

Nominal uncertainties for the SE results are

provided. The two techniques to determine O_ are

in excellent agreement.

Local SE-computed values for O_ and 0_2 for the

respective surfaces adjacent to V1 and V2 are

also listed in the tables for each case. These radii

are computed in the plane bisecting the container

normal to the cylinder axis (Fig. 18). The

differences between O_for the tank computed by

eq. (25) and O_, and _ computed by SE provide

a measure of error for the use of eq. (25) arising

from the infinite container assumption. This error

might be considered small in light of such low

aspect ratio m containers. It is clear from Table 2

that all SE values for O_ and _ approach eq. (25)

values for X as m increases.

Figure 17. Surface Evolver solution of VTRE-like

cylindrical model with V1 = 0.6, V2 = 0.35, 0= 8.11 °.

Oval voids on the perimeter are dry region of the tank
wall.

Table 1. Comparison of present theory eq. (25) and

Surface Evolver (SE) computations: Effect of contact

angle O, V1 = 0.6, V2 = 0.35, m = 1, Qliq = 55%.

0 Rheo Pv N err. _ err.

(o) eq.(25) SE SE (%) SE (%)
0 0.1268 0.1273 0.138 7.2 0.122 1.6

5 0.1271 0.1276 0.134 0.4 0.122 1.6

10 0.1279 0.1285 0.135 1.5 0.128 1.6

20 0.1319 0.1325 0.140 4.3 0.132 1.5

30 0.1399 0.1406 0.154 0.6 0.141 1.4

40 0.1540 0.1550 0.176 0.5 0.161 1.2

44.7 0.1639 0.1653 0.189 3.7 oo

Figure 18. Smallest symmetrical element cross-section

of cylindrical VTRE model shown in Fig. 17: a.

Surface Evolver solution, b. schematic identifying

parameters. Compare with Fig. 13b.

Table 2. Results of Surface Evolver: Effect of aspect

ratio m; volume of liquid fixed, 0 = 0, 0_heo = 0.1268,

V1 = 0.6, V1 = 0.35. Case m = 2 almost uncovers lid,
case m = 4 uncovers lid.

m Pv _ err. _ err. Q

(L/D) SE SE (%) SE (%) (%)

0.75 0.1260 0.158 3.3 0.144 6.9 73

1 0.1273 0.138 7.2 0.122 1.6 55

2 0.1269 0.128 0.0 0.122 8.2 28

4 0.1059 0.107 0.4 0.103 9.7 14
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Table3.ResultsofSurface Evolver: Effect of liq. fill

Qlia; 0= 0, _theo = 0.1268, V1 = 0.6, V2 = 0.35, m = 1.

Qliq P_ P_ err. _ err.

(%) SE SE (%) SE (%)
30 0.1273 0.130 2.3 0.122 8.2

55 0.1273 0.138 7.2 0.122 1.6

70 0.1271 0.144 2.1 0.136 7.3

80 0.1260 0.160 1.2 0.153 6.5

Table 4. Results of Surface Evolver: Effect of vane

size/ratio V1, V2:0 = 20 °, m = 1, Qliq z 55%, SE errors
< 2%.

¢_1 q/2 LI_heo _ _kl _k2

eq. (25) SE SE SE
0.60 0.35 0.1268 0.1325 0.140 0.132

0.60 0.45 0.1134 0.1193 0.131 0.125

0.90 0.35 0.1031 0.1001 0.103 0.100

with _vraB = 0.412 determined experimentally.

An even better prediction is possible using eq.

(25) setting V1 = 0, FAnl = 0, with V2 = 0.21. For

this case _= 0.419. This value is within < 2% of

fWTaB, the improvement arising from the

approximation of the symmetric subsection as an

isosceles triangle as opposed to a right triangle.

Both predictions, using eqs. (19) or (25), are

correct to within the experimental uncertainty of

5% for V2 -- 0.21.

Table 5. Predicted and measured Rfor VTRE.

Technique

Predicted, eq. (19) 0.396

Predicted, eq. (25) 0.419

Measured eq. (24), Fig 12 0.412

Comparison of Theory and Experiment: VTRE

As previously mentioned, the VTRE rewetting

event only involved the outer radial wall vanes

due to a low fill level in the spherical tank as

depicted in Fig. 11. Thus the cylindrical tank

geometry discussed in this paper that models the

spherical VTRE tank rewetting event following

thrust resettling is that of Fig. 7. _ for this

cylindrical model was solved as a function of V

and presented in Fig. 8.

By equating radii of the spherical VTRE tank

and cylindrical VTRE model, and by evaluating

V based on initial interface location (refer Fig.

lla) and detailed VTRE design drawings

represented only schematically in Fig. 10, a value

of V= 0.21 may be determined for the rewetting

event. As demonstrated in Fig. 8, with n = 12,

this low value for V shows that, at equilibrium,

the interface pins on the vane edges and single

interfaces cover two interior corners formed by

adjacent vanes. Thus, both constraints #1 and #2

are violated. Nonetheless, observations of the

flight video show that such constraints are not

exceeded during the larger portion of the

transient event. If these constraints were ignored

for the transient rewetting one might simply use

the value of Xcomputed from eq. (19) with n =

12 and V = 0.21. As shown using dashed lines in

Fig. 8, _= 0.396 computed in this manner, which

is in surprisingly favorable agreement (< 4%)

Further Considerations

Following an acceptable agreement for

between theoretical predictions and VTRE flight

results compared in Table 5, the theoretical

approach, which allows the closed form

calculation of the most important flow

characteristics such as rise height and flow rate,

can be used to compute transient interface shapes

throughout the container. For example, the

surface within the smallest symmetric sub-section

of the cylindrical 24 vane VTRE model (Fig. 13)

is computed in Fig. 19 at various times. The tip

rise height and receding bulk meniscus location

may be determined explicitly by eqs. (4) and (6),

respectively. The latter is exaggerated by a factor

of 2 in Fig. 19 to clearly illustrate the 'draining'

of the container by the corner flows.

The full VTRE model is computed and shown in

Fig. 20 at time t = 2.5s--the approximate

duration of the initial VTRE PMD rewetting
event had all the vanes been wetted. The VTRE

model with only exterior vanes wetted is also

computed and shown in Fig. 21 at time t = 2.5s--

the model of the PMD rewetting process actually

achieved on-orbit. (Note that Kin Fig 21 without

the central vanes is significantly larger than X in

Fig. 20 with the central vanes.) Computations of

such surfaces serve well to illustrate the wealth of

information contained within the closed form

analytic solutions reported herein.
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Fig. 19 Transient corner flows in smallest symmetrical

sub-section of 24-vane VTRE model (times t = 0, 0.5,

1.0, 1.5, 2.5).

Fig. 20. Full VTRE model surface at t =0, 0.5, 2.5s. 12
Inner and 12 outer vanes not shown.

0ill

Fig. 21. VTRE model surface without central vanes at

t = 0, 0.5, 2.5s. Model approximates flight condition

of PMD rewetting after thrust resettling. 12 outer
vanes not shown.

Concluding Remarks

The literature reports an accurate analytical

solution approach to predict spontaneous

capillary flows in containers with interior

corners. Such flows are important to a variety of

low-g fluids handling operations including

propellant management. In this paper a procedure

is outlined and demonstrated that culminates in

the prediction of transient flows in complex

cylindrical containers that are symmetric, or

where the contact angles _ around the projected

cross-section may be specified. The general steps

are:

1.Identify the interior corners of the tank

satisfying the Concus-Finn wetting

condition.

2. Derive the mean radius of interfacial

curvature _ for the tank.

3. Identify and derive the constraints on _.

4. Compute Hj from _ for each wetting corner

of the tank and compute important transient

quantities such as flow distance, flow rate,

receding meniscus location and entire

surface shape.

In this paper the important unknown quantity is

the dimensionless mean radius of curvature of

the interface at equilibrium, knowledge of which

enables the determination of the correct initial

condition for the sought transient solutions. The

theory of de Lazzer et al3 to compute R is

modified to account for symmetry planes within

complex cylindrical tanks. Three cylindrical

vaned tank-types of increasing complexity are

modeled to demonstrate the approach to compute

_." a circular tank with central radial vanes

(Fig. 4), a tank with wall mounted radial vanes

(Fig. 7), and a combination tank which serves as

a model for the Vented Tank Resupply

Experiment (VTRE) Shuttle flight tests (Fig. 13).

It is shown that even for the most complex tank,

agreement in _ for the present theory with 3-D

numerical predictions is typically better than 5%

for aspect ratio containers of about 1 or greater.

The results apply in general to symmetrical

polygonal tanks and certain tanks with curved

walls as demonstrated. Some of the limitations of

the theory are noted.

NASA/CR--2002-211974 14



The results of the analysis greatly speed and
simplify calculations of capillary driven flows in
complex containers which model important
problems such as PMD rewetting following

thrust resettling. Experiments concerning PMD
rewetting were conducted during VTRE testing
and these data are digitized and presented in Fig.

12. _ computed from the VTRE experimental
data agrees to _+4% with _ computed using the

theoretical approach as shown in Table 5, despite
the apparent violation of a significant number of

assumptions.

The all-analytical approach espoused herein may
be used to quickly and accurately determine

solutions to problems commonly thought to
require extensive 3-D transient CFD. The
approach is ideal for design optimization and an
example problem is solved. The technique may

be applied as a guide to CFD modeling, or serve
as a 'benchmark' to numerical techniques in
certain limiting cases. The analytic approach may

also be exploited to design test tanks mimicking
the smallest symmetrical sub-section of larger
tanks for ground tests (i.e. low-g aircraft). The

tanks may be significantly smaller than the full-
scale tanks, or even scale models, making data
taken from brief periods of low-g more
representative of on-orbit performance.
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